Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pressure based first-principles study of the electronic, elastic, optic and phonon properties of zincblende InN

Identifieur interne : 000130 ( Chine/Analysis ); précédent : 000129; suivant : 000131

Pressure based first-principles study of the electronic, elastic, optic and phonon properties of zincblende InN

Auteurs : RBID : Pascal:14-0015083

Descripteurs français

English descriptors

Abstract

Generalized gradient approximation proposed by Perdew-Burke-Ernzerhof (GGA-PBE) is used to determine the effect of pressure on electronic, elastic, acoustic, optical and vibrational properties of zincblende InN along with the Ultra soft pseudopotential method. The structural properties show good consistency and stability at elevated pressures. The zincblende InN displays zero band gap and its metallicity maintains even at high pressures. The density of states appear in a quarterly divided region, where the contribution of different states have been discussed, and it is found that the peak positions are consistent with experimental L1, L3, K absorption and emission edges. The effect of pressure appears in strong hybridization due to which DOS above and below the Fermi level are shifting to the corresponding higher and lower energies due to p-d hybridization. The calculated elastic constants agree well with the literature. Except C44 and Cs, all others show an increasing trend with the pressure. Acoustic wave speeds have been calculated in [100], [110] and [111] directions with the help of elastic constants for the first time. For the optical properties, the main peaks of the imaginary part of dielectric function lie in close vicinity of experiment and shift to higher energies with a reduction in peak intensities when the pressure effects come into play. Similarly the absorption peaks are red shifted with respect to hydro-static pressure. The refractive index is maximum at lower energies and its magnitude reduces with pressure and the maximum value of energy loss function is obtained corresponding to minimum dielectric function. Phonon frequencies in high symmetry directions agree well with the only available first principle study. Except XTA, WTA, and LTA. all the other modes show an increase in phonon frequencies when pressure is exerted, this is further confirmed by Gruneisen parameters calculated for the first time.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0015083

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Pressure based first-principles study of the electronic, elastic, optic and phonon properties of zincblende InN</title>
<author>
<name sortKey="Usman, Zahid" uniqKey="Usman Z">Zahid Usman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Centre of Materials Science, School of Material Science and Engineering, Beijing Institute of Technology</s1>
<s2>Beijing 100081</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cao, Chuanbao" uniqKey="Cao C">Chuanbao Cao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Centre of Materials Science, School of Material Science and Engineering, Beijing Institute of Technology</s1>
<s2>Beijing 100081</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mahmood, Tariq" uniqKey="Mahmood T">Tariq Mahmood</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Centre of Materials Science, School of Material Science and Engineering, Beijing Institute of Technology</s1>
<s2>Beijing 100081</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for High Energy Physics, University of the Punjab</s1>
<s2>Lahore-54590</s2>
<s3>PAK</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Lahore-54590</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0015083</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0015083 INIST</idno>
<idno type="RBID">Pascal:14-0015083</idno>
<idno type="wicri:Area/Main/Corpus">000346</idno>
<idno type="wicri:Area/Main/Repository">000659</idno>
<idno type="wicri:Area/Chine/Extraction">000130</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-4526</idno>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<title level="j" type="main">Physica. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption edge</term>
<term>Blende structure</term>
<term>Density functional method</term>
<term>Elastic constants</term>
<term>Electronic density of states</term>
<term>Energy gap</term>
<term>Generalized gradient approximation</term>
<term>Grueneisen constant</term>
<term>Indium nitride</term>
<term>Metallic bonds</term>
<term>Optical phonons</term>
<term>Phonon mode</term>
<term>Pressure effects</term>
<term>Pseudopotential methods</term>
<term>Sound velocity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode fonctionnelle densité</term>
<term>Phonon optique</term>
<term>Approximation gradient généralisé</term>
<term>Effet pression</term>
<term>Mode phonon</term>
<term>Célérité son</term>
<term>Méthode pseudopotentiel</term>
<term>Bande interdite</term>
<term>Liaison métallique</term>
<term>Constante élasticité</term>
<term>Limite absorption</term>
<term>Paramètre Grüneisen</term>
<term>Densité état électron</term>
<term>Structure blende</term>
<term>Nitrure d'indium</term>
<term>InN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Generalized gradient approximation proposed by Perdew-Burke-Ernzerhof (GGA-PBE) is used to determine the effect of pressure on electronic, elastic, acoustic, optical and vibrational properties of zincblende InN along with the Ultra soft pseudopotential method. The structural properties show good consistency and stability at elevated pressures. The zincblende InN displays zero band gap and its metallicity maintains even at high pressures. The density of states appear in a quarterly divided region, where the contribution of different states have been discussed, and it is found that the peak positions are consistent with experimental L
<sub>1</sub>
, L
<sub>3</sub>
, K absorption and emission edges. The effect of pressure appears in strong hybridization due to which DOS above and below the Fermi level are shifting to the corresponding higher and lower energies due to p-d hybridization. The calculated elastic constants agree well with the literature. Except C
<sub>44</sub>
and C
<sub>s</sub>
, all others show an increasing trend with the pressure. Acoustic wave speeds have been calculated in [100], [110] and [111] directions with the help of elastic constants for the first time. For the optical properties, the main peaks of the imaginary part of dielectric function lie in close vicinity of experiment and shift to higher energies with a reduction in peak intensities when the pressure effects come into play. Similarly the absorption peaks are red shifted with respect to hydro-static pressure. The refractive index is maximum at lower energies and its magnitude reduces with pressure and the maximum value of energy loss function is obtained corresponding to minimum dielectric function. Phonon frequencies in high symmetry directions agree well with the only available first principle study. Except X
<sub>TA</sub>
, W
<sub>TA</sub>
, and
<sub>LTA</sub>
. all the other modes show an increase in phonon frequencies when pressure is exerted, this is further confirmed by Gruneisen parameters calculated for the first time.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4526</s0>
</fA01>
<fA03 i2="1">
<s0>Physica, B Condens. matter</s0>
</fA03>
<fA05>
<s2>430</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Pressure based first-principles study of the electronic, elastic, optic and phonon properties of zincblende InN</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>USMAN (Zahid)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CAO (Chuanbao)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MAHMOOD (Tariq)</s1>
</fA11>
<fA14 i1="01">
<s1>Research Centre of Materials Science, School of Material Science and Engineering, Beijing Institute of Technology</s1>
<s2>Beijing 100081</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre for High Energy Physics, University of the Punjab</s1>
<s2>Lahore-54590</s2>
<s3>PAK</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>67-73</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145B</s2>
<s5>354000501601010140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>47 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0015083</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Generalized gradient approximation proposed by Perdew-Burke-Ernzerhof (GGA-PBE) is used to determine the effect of pressure on electronic, elastic, acoustic, optical and vibrational properties of zincblende InN along with the Ultra soft pseudopotential method. The structural properties show good consistency and stability at elevated pressures. The zincblende InN displays zero band gap and its metallicity maintains even at high pressures. The density of states appear in a quarterly divided region, where the contribution of different states have been discussed, and it is found that the peak positions are consistent with experimental L
<sub>1</sub>
, L
<sub>3</sub>
, K absorption and emission edges. The effect of pressure appears in strong hybridization due to which DOS above and below the Fermi level are shifting to the corresponding higher and lower energies due to p-d hybridization. The calculated elastic constants agree well with the literature. Except C
<sub>44</sub>
and C
<sub>s</sub>
, all others show an increasing trend with the pressure. Acoustic wave speeds have been calculated in [100], [110] and [111] directions with the help of elastic constants for the first time. For the optical properties, the main peaks of the imaginary part of dielectric function lie in close vicinity of experiment and shift to higher energies with a reduction in peak intensities when the pressure effects come into play. Similarly the absorption peaks are red shifted with respect to hydro-static pressure. The refractive index is maximum at lower energies and its magnitude reduces with pressure and the maximum value of energy loss function is obtained corresponding to minimum dielectric function. Phonon frequencies in high symmetry directions agree well with the only available first principle study. Except X
<sub>TA</sub>
, W
<sub>TA</sub>
, and
<sub>LTA</sub>
. all the other modes show an increase in phonon frequencies when pressure is exerted, this is further confirmed by Gruneisen parameters calculated for the first time.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60B20D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60C20D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Phonon optique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optical phonons</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Approximation gradient généralisé</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Generalized gradient approximation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Effet pression</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Pressure effects</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mode phonon</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Phonon mode</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modo fonón</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Célérité son</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Sound velocity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Méthode pseudopotentiel</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Pseudopotential methods</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Liaison métallique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Metallic bonds</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Constante élasticité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Elastic constants</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Limite absorption</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Absorption edge</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Paramètre Grüneisen</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Grueneisen constant</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Densité état électron</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electronic density of states</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Structure blende</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Blende structure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estructura blenda</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>013</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000130 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000130 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:14-0015083
   |texte=   Pressure based first-principles study of the electronic, elastic, optic and phonon properties of zincblende InN
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024